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Abstract—The non-linear one-dimensional unsteady problem describing the separation of the com-
ponents of a solution by an ideal semipermeable membrane is studied.

By means of a suitable application of the Laplace transform with respect to the space variable,
the non-linear partial differential equation governing the system has been transformed into an integral

equation.

Numerical and approximate analytical solutions of the governing integral equation are presented.
The results obtained with approximate analytical solutions have been compared with the exact numerical
solutions and satisfactory agreement has been found.

NOMENCLATURE
a, constant, see equation (22);
b, constant, see equation (22);
¢, concentration;
D, diffusion coefficient;
2 x .
erf, error function: erfx = %J e *dx;
1]
erfc, complementary error function:
erfc(x) = 1 —erf(x);
g, the Laplace transform of r;
k, membrane constant;
L, Laplace operator;
P, pressure;
r, dimensionless concentration, see (4);
To, dimensionless concentration for y = 0;
R, operator, see equation (9);
t, time variable;
v, velocity;
V, dimensionless velocity, see (4);
x, space variable;
¥, dimensionless space variable, see (4).

Greek letters

B, constant, see equation (10);

7, dimensionless concentration: y = ro+1;

T, gamma function;

4, ratio between osmotic and hydrostatic
pressure;

AP, hydrostatic pressure difference across the
membrane;

An*, difference between the osmotic pressure of
the salt solution and that of the effluent;

T, dimensionless time variable, see (4);

Th» asymptotic time, see equations (24), (25);

&, error percent.

*Istituto di Matematica, Facolta di Ingegneria, Univer-
sita di Napoli.
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INTRODUCTION

RECENTLY an increasing interest has been devoted to
the membrane separation technique for producing
separation and purification without phase changes; in
fact no heat addition is required and the process can
be considered isothermal. In particular, hyperfiltration
membranes already have many applications in the
industrial field such as, for example, in seawater
desalination. In recent years, these techniques have
also been extended to the separation and concentration
of solutions of macromolecules [1,3,6]. Knowledge
of the fluid-dynamic field of some basic reverse osmosis
systems improves the process control.

In this paper an indefinite membrane is considered
and the unsteady flow is assumed to be one dimen-
sional in a direction perpendicular to the membrane.
The rejection coefficient is unitary, i.e. we assume that
the concentration of the solute on the lower side of
the membrane is zero; this is the case of an ideal
efficiency. In practice the rejection coefficient of a real
membrane can reach values very close to one (0:99).
The solution density is considered to be constant;
this hypothesis is very important as, in fact, the system
of equations is uncoupled and only diffusion equations
are to be solved.

Even under these assumptions, the problem is very
difficult. If the mass flow rate can be considered con-
stant the diffusion equation becomes linear and can be
solved by a Laplace transform technique [8]. This
case occurs when the ratio between the osmotic and
hydrostatic pressure, é is zero.

In [7] and [9] some approximate solutions are
presented; they refer to values of & which are very
small and very close to one. In [4] the integral method
was applied.

In this paper numerical and analytical solutions are
presented. Both analyses are based on an integral form
of the diffusion equation; in this way it was possible
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to obtain in short computer times accurate numerical
results and approximate solutions in all fields of
interest.

BASIC EQUATIONS AND BOUNDARY CONDITIONS

The equations governing an incompressible, iso-
thermal, non-homogeneous, one-dimensional flow are
the continuity, diffusion and momentum equations;
the unknown functions are the velocity v(x,t), the
pressure p(x, t) and the concentration c¢(x, t). The first
equation is satisfied by any function depending only
ont,v = v(t), whereas the second and the third ones give
the concentration ¢(x, t) and the pressure p(x, ) respect-
ively. The pertinent boundary conditions are

c(x,0) = c(o0,t) = ¢ (N
v(0, 1)c(0, t) = Dc,(0, t) )
An* — AP = kv(0,t) 3)

where D is the binary diffusion coefficient, An* and
AP are the osmotic and hydrostatic pressure respect-
ively and k is the membrane constant. The osmotic
pressure can be written as: An* = n§c(0, t)/co where
n§ and ¢, are reference values, i.e. 7§ is the osmotic
pressure at the concentration ¢,.

From equation (3) the velocity v, equal to v(0,1),
can be obtained. By introducing the following dimen-

sionless quantities
AP
= X - ;
Y=
)
V=or@1)+d-1

the diffusion equation and the relative boundary con-
ditions are

re+Vr=r, )

r3,0) = r(c0,7)=0; r(0,7)=V[r0,1)+1]. (6

This problem has been solved in closed form [8]

only for § = 0, i.e. for constant flow rate; in particular

for r(0, 7) one has

0, 1) = erf[t12/2] + (z/2)erfc(—11/%/2)

+ (¢/m)* > exp(—1/4). (7)

In general, for § # 0, equations (5) and (6) represent

a non-linear problem with respect to t; therefore the

application of the standard Laplace transform tech-
niques with respect to 7 results very hard.

INTEGRAL FORM OF THE DIFFUSION EQUATION
The Laplace transform, with respect to y, does not
directly lead to the solution because it requires two
conditions at y = 0. However, in this way, it is possible
to obtain an integral equation suitable for analytical
and numerical purposes. By putting L(r) = g(p, 1), from
the equations (5) and (6) one has

ge+g(pV—p*) = —pr(0,7)—V. (@)
The formal solution of this equation is

g= —J (v+pro)exp{[p* +p(1-9)]
0 x (t—s)—pdR}ds (9)
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where rq = r(0, 7) and
rt

R(z,s) = J ro(w)dw.

s

Riemann’s inversion formula and equation (9) give
the following expression for r

T

1
V(y,T)=mf {(1=8)(1+70/2)~dro[1+ R/2(t—5)]
0
+yro/2At—s)}(t—s)" e #Em9ds  (10)

where 28(t, s, y) = 1 -6 4+ (y —6R)/(t —s). This equation
does not yet supply r since r, is an unknown function.
This function can be obtained by evaluating equation
(10) at y — 0. Thus one has

ro = ﬁj {1=8)(1+70/2)—rod[1+ R/2(x—5)]}
¢ X (1—s)"12e=B-9ds (11)

where 8, = f(z, s, 0).

Equation (11) constitutes a condition of compati-
bility and it is an integral equation for r,. When
6 =0, equation (11) is linear and can be easily solved
to obtain the expression (7) by Laplace transform with
respect to . Once ry is known, equation (10) gives r(y, 7).

NUMERICAL SOLUTIONS

Numerical solutions of the differential equations (5)
and (6) can be obtained by the usual procedures. This
was performed for 0 < 7 < 100. Solutions for higher
values of 1 require prohibitive computer times (several
hours on an IBM 360/44 computer). On the other hand,
from equations (10) and (11) very accurate results were
obtained for 0 < 7 < 1000 in few minutes.

To solve equation (11) the interval (0, t) was divided
by n parts: in any sub-interval 1;_;, 7; we assume
(i} Bo = const. (ii) a linear expression for ry and therefore
a quadratic expression for R. With these assumptions
in any sub-interval, only I, integrals are to be evalu-
ated with

I,= 71"“2‘[('5—5)"‘3/2 exp[ — B3(r—s)]ds
n=0,12....

These integrations can be performed in closed form
in terms of error function and their derivatives. It
follows that equation (11) can be written as

r0=So+Slr0+52ré (12)

where §; are known quantities.

The solutions of the equation (12) were compared
with the exact analytical solution for 6 = 0; the results
are given in Fig. 1 and show a good accuracy for all
the considered values of 1. Therefore satisfactory
numerical solutions can be obtained by the proposed
procedure.

At this point an exact series expansion for r, is
presented that is very suitable for small values of 7.
Approximate solutions in different fields of interest will
also be given.
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Fi1G. 1. Comparison between the analytical and numerical solutions for § = 0. O, N.L: numerical results
obtained by means of integral equation (10); A, N.D.: numerical results obtained by means of differential
equation (5).

SERIES EXPANSION FOR r,

The function ry can be expanded in series of the
variable t%/? by putting

[+
ro= 3, ¢t
i=1

13)

To obtain the ¢; coefficients the right side of equation
(11) is integrated by parts to give

o= n'”zj exp(—22/4)[1 — 8+ ro(1—28) —6rf]
0

x(r—s)"’/zds—J Yo erf%ds (14)
0

where z = 28,(t—s)Y/2.
Series expansions for the exponential function and
error function give

o= 3 EV(EY
exp(=2 /)= L = (2)

'Z— 2 (_l)i(z/2)2i+l
R R Y TN T

(1s)

Moreover by expanding R in Taylor series with initial
point s = 7 one has

& (e =) (=1)

R=Y

=y i+ 1)! ’
_grente—yn
A& G

The derivatives of ry are

2 h(h h .
D= Y cpolz—1)...(C~i+1 ]
r ;.; c,.2<2 1) (2 i+ )‘r

It follows that
z= Y die—s)*¥; di= Y T (17)
i=0 K=0

where
(=)
h = G D 2=
i>0;

oc, for h>0

cio=0 for Co0 =1-6.

Substitution of equations (15)-(18) into equation (11)
and Cauchy rule in its generalized form for the product
of series (see Appendix), lead to

'Sl Gudft

= T
J=0m=m, J~-m)i(—4’
nl mec,, DY
+2 mor 19
JZ=:1 m=zmz(_4)J_m+1(J—m)![2(J'—m)+1] ( )
where
dy, = Z Ciz,s;ll_M)Im/Z,J—m+i—-}
i=0
D}")m = Z Ciz,gl_m)HI(m/zh1,J—m+i+§
i=0
in k
A=Y X ik
(. 1=0 k=0

k>0
1 .0 0
C}lzk = Cit,k > Cgozk =0 for {i -0 and C&))o =
0

1 T+ HIG+1)
Lij=—F7——""—

Jno (@+j+2)
Go=1-9; G;=(1-28)c;—dQ;;

J
QJ= Z CmCi-m
m=1
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m, is the highest value between 0 and 2j—n+1
m, is the highest value between 1 and 2j—n+1

ky=n+m-2j-1.
Equation (19) furnishes very simple expressions for the
first coefficients; in fact one has
2
7
APPROXIMATE SOLUTIONS FOR r,

From equation (11) one can obtain different types
of approximate solutions.

(1-98); c;=01-0M1-38)/2.

Ccy =

(a) Linearized solution

By MacLaurin expansion of ry(z, €), with ¢ = (1 —~8)/,
considering the first term only one has: ry = erg, (7).
Direct substitution of this expression into equation (11),
via simple manipulations gives

"”Wf

This integral equation provides the required solution,
valid for 6—1, in the form

1/2(1 _r01)ds

ro = (1 —exp(r) erfcft*]). (20)

(b) Asymptotic solution

When 7 — oo the equation (11) can be simplified. In
fact, it is

lim R/(x —s) = ro(c0) = (1—9)/6.

It must be noted that the asymptotic expression for r
corresponds to a vanishing value of the velocity V.
Assuming this limiting value for R/(t —s), equation (11)
becomes

1 T
= ———f (t—8) 121 =6—6ry)ds
JmJo
and gives the following expression for r,
1-8
ro === [1—exp(8*t)erfc(s \/1)]. (21)

(c) Initial solutions

When t - 0, R/(t—s)— 0, i.e. for very small values
of 7, R/(t—s) in the equation (11) can be neglected.
Therefore ry = rqq, where

for = (1 —9 [a bY2 erf(br)V/?
—aexp[(a®—b)r]erfc(a /)] (22)
for b # a?.
For b = a? one has
o1 = ——[erf(a\/r) 2a*rerfc(a /1)
+2a*(t/m)"/? exp(—a®t)] (22 bis)

where: a = (36 —1)/2; b = (1-8)*/4.

This solution can be improved for small, but not very
small values of 7.

Because 0 < R/(1—s) < ro(z), R/(t—s) can be ap-
proximated by ry(s); moreover for small values of s
it is ro 27 Y2(1—6)s'%. Assuming roR/(t1—s) =

4(1—6)*s/m and solving equation (11), one has

ro = roj+7ro2, Where
26(1-9)

To, = — (

n(a® —b)b'/?
2
x {(%—br -

—(br/m) 2

L
iy erf(bt)!/?

bl/z
a*-b

x [1—exp[(a*—b)t]erfc(ar/T) + ab”zr} (23)
and ry, is given by equation (22).

ASYMPTOTIC TIME

We define as asymptotic time 7, the time after which
the relative difference between the asymptotic value
and the interfacial concentration r, is less than k, ie.,
for T > 1, one has ro > (1 —k)ro(oo) = (1—k)(1—6)/6.
For very small values of 8, 7, is obtained from the
solution of [9].

By considering the asymptotic value of the error
function one finds

(1=0)(1—k)/d = [1~(201)""12](1 - 4)/d
and consequently
= 1/26k*) for 0<é <02 (24

For the other values, ie. for 0,2 <d <1 better
accuracy is obtained from equation (21) and the asymp-
totic evaluation gives

(te = 1/(rS%K?). (25)

APPROXIMATE SOLUTIONS FOR r(v, 7)
For small values of y, the following representation
can be used
ry, 1) = Y Y
i=0
By substituting this expression in the equations (5) and

(6) and by equating the coefficients of similar powers
of y one has

fo=ro;  fi=V(+re);
Jira= N+ 2+ + V] i42)
Therefore the solution is found in the term of 7.

At high values of y an asymptotic solution can be
evaluated. In fact equation (10) can be written as

r(p.7) = Zﬁj roy(t—3)~ 32 exp[ — y*/{c — 5)] ds. (26)
0

Also in this case the solution can be obtained in term
of ro; therefore, for any range of the variable, one has
the appropriate expression of ry and the corresponding
solution of equation (26).

For instance, let us consider equation (13); by simple
manipulation one has:

@

Y. eI (h/2+ 1) (dr)iterfe(y/2 /1)

k=1

r(y, 1) =
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FiG. 2. Comparison between the approximate analytical solutions and the numerical solutions for § = 0-8.
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FiG. 3. Comparison between the approximate analytical solutions and the numerical solutions for & = 0-5.
O:asinFig. 1; A:asin Fig. 1.

where T is the gamma function and i" erfc means the
repeated integral of the complementary error function.
From the linearized solution (20)

-5
- ) )

Eventually equation (21) leads to the following ex-
pression:

1= y
=55 ()
—exp(6y+521)erfc<6\/t+2L\/T>]. (28)

ANALYSIS OF THE RESULTS

The accuracy of the numerical solution is very satis-
factory. Comparison with the analytical solution in the

case ¢ =0, shows that the numerical results are
accurate up to at least four significant figures in the
entire ranges of 1. Therefore it can be inferred that also
for 6 # 0 the numerical results presented here are a
valid test for the accuracy of the approximate solutions.
In the Figs. 2-4 the following approximate solutions
are compared with the numerical solutions for values
of 4 equal to 0-8; 0-5; 0:01:
(i) The solution linearized with respect to (1—4)/d,
(L.S.) equation (20)

(ii) The asymptotic solution (A.S.), valid for T — oo,
equation (21)

(iii) The solution valid when the cross velocity V is
almost constant (A.C.S.), accurate for small
values of both é and t, equation (22)

(iv) The initial solution (L.S.) valid for small value
of § and for 0 < 7 < 100, equation (23)



950

o™

F. BeLruccr and A, Pozzt*

10°

F1G. 4. Comparison between the approximate analytical solution and the numerical solution obtained
by means of integral equation (10) for 4 = 0-01. O: as in Fig. 1.

Let & be the highest percentage error in the entire
1 field. When & = 0-8 all the approximate solutions are
satisfactory. In particular, the most accurate solution
is the asymptotic one (§ = —0-3 per cent) whereas the
others have & = 1-3 per cent (A.CS.)and £ = 1 per cent
(L.S.).

For 6 = (5 the asymptotic solution is still very good
(€ = — 3 per cent) while the other two solutions (A.C.S.
and L.S.) show somewhat higher errors: £ = +11 per
cent and § = — 10 per cent respectively.

For § = 001 and 0 <t < 100 the initial solution
shows an error of less than 10 per cent.

For small values of t a very simple expression for
ro can be obtained from equation (13). Considering
only two terms of the expansion in series one has

1/2
ro = (1 —5)[2@ +(1-35) %J

that furnishes very good valuesfort < 1. For 1 <1< 10
equation (29) gives results not too different from the
exact ones. Forinstance,inthecase 6 = 0,fort = 1,4,9
one has the exact-values 1-71; 5 and 9-96 while equation
{29) gives 1-63, 426 and 7-89.

(29)

STEADY-STATE SOLUTION

For practical purposes an analysis of the asymptotic
behaviour of the solution is very important. In this
case (rejection coefficient equal one) the problem is
very simple. In fact for r — o0 it is ro = (1 —48)/6 and
V-0

This result means that, from the industrial point of
view, the steady-state situation for the case rejection
coefficient equal to one is not of practical interest
because the limiting flux value is zero. However the
process might be of some interest from an industrial
point of view at values of time not higher than specific
7, at which the flux V is significantly different from zero.

More complex situations arise when the rejection
coefficient is different from one and a discussion of this
problem will be published.very soon [2].

CONCLUDING REMARKS

In this note numerical and analytical solutions of the
problem describing the separation of the components
of a solution by an ideal semipermeable membrane
were presented. A suitable application of the Laplace
transform gave the governing equation in integral form.

Accurate numerical results are obtainable in a few
minutes by an IBM 360/44 computer. A direct approach
using the original differential equation would require
comparatively longer computer times.

Approximate solutions were given in the whole range
of 7 and &. In each case approximate values to less
than 10 per cent were calculated.

Of particular interest is the solution for small values
of & and for 0 < = < 100; in fact in [7] the absence of
such a solution was noted. Moreover a very simple
expression for the asymptotic time 7, was obtained;
where 1, represents the value of the dimensionless time
after which, the asymptotic value (1—48)/0 can be
assumed instead of rg, within a percentage error k.
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APPENDIX

Statement of equation (19).
By repeated applications of the Cauchy rule for the
product of two series one has:

= Y A (1=

in=0

where

in
An,i,. = z An—l,in_1ai,‘—in_,;Aiil =4a;.
in.1=0
By application of the Cauchy rule, the two functions that
must be integrated in equation (14) are:

14.Imco
Z 2 G m/2 ( /) ZA2(J m)' _S)J+x m

J=0m=0 -m)! o

951

smi2y-1 —1ym

22U -m+1)(f _ m)'[2(J m)+1]

5 5 me

J=1 m=1

fa e
X Z AZ(J—m)+l.i-(T—'s)l+ mt
i=0

In this way all the integrals in equation
evaluated as

(14) can be

:
n'”zj s(t—s)ids = I, jo*+ !
0

Therefore equation (14) becomes:

® J G
L2 m I
= L -y S I ey

8

i

y Z Ay mgd (k=2
k=0
© J ¢
+2 =
121 mzl( 4)J " —m)[2(J —-m)+1]

«©

207 —m)+ 1.0+ (k]2 2
X Z Tom2y-1,0-n+i+y E 2% ™ W2 m2)
=0 =0

To determine the unknown quantities c;, the coefficients of
the same powers of 7 are equated.
In this way one has the equation (19).

SOLUTIONS ANALYTIQUES ET NUMERIQUES POUR LA POLARISATION PAR
CONCENTRATION EN HYPERFILTRATION EN L’ABSENCE D’ECOULEMENT AXIAL

Résumé—On étudie le probléme instationnaire, non-linéaire et unidimensionnel qui décrit la séparation
des composants d’une solution a travers une membrane idéale semi-perméable.
Au moyen d’une transformation de Laplace convenable portant sur les variables d’espace, I'équation
aux dérivées partielles non-linéaire qui gouverne le systéme a été transformée en une équation intégrale.
Des solutions numériques et des solutions analytiques approchées de Péquation intégrale fondamentale

sont présentées.

Les résultats obtenus a l'aide de solutions analytiques approchées ont été comparés aux solutions
numériques exactes qui sont trouvées en accord satisfaisant.

NUMERISCHE UND ANALYTISCHE LOSUNGSANSATZE FUR
KONZENTRATIONS-POLARISIERUNG DURCH HYPERFILTRATION
OHNE AXIALE STROMUNG

Zusammenfassung—Fiir den eindimensionalen Fall wird der Vorgang der instationdren Trennung von
Komponenten einer Lésung durch eine ideal-semipermeable Membran untersucht.
Vermittels geeigneter Anwendung der Laplace-Transformation wird die fiir das System geltende
partielle Differentialgleichung in eine Integralgleichung umgeformt.
Fiir die Integralgleichung werden numerische und analytische Nadherungsldsungen angegeben. Die
Ergebnisse der analytischen Ndherungsldsung werden mit den Ergebnissen der numerischen Auswertung
verglichen, wobei befriedigende Ubereinstimmung feststellbar ist.

YUCJIEHHBIE U AHAJIUTUYECKUE PEHIEHUSI KOHLIEHTPAIIMOHHON
MOJIAPU3ALINU ITPU TUIIEPO@UJIBTPALIMM BE3 AKCHUAJIBHOT'O TTOTOKA

Ammotauna — Vccrnenyerca HenmuHelHas ONHOMEPHas HeCTallMOHapHas 3alaya, ONMChIBAKOLIAS Pa3-
IeJIEHHA KOMIIOHEHT pacTBopa C MOMOILBIO MAeanbHOM nonynpoHuuaeMol MemGpansl. OnuchiBa-
Jolllee CHCTEMY HeMHENHOe nuddepeHIIHANBHOE ypaBHEHHE B YACTHBIX IIPOH3BOAHBIX peo6pa3oBano
B MHTErpajbHOE YpPaBHEHHE C MOMOLIBI0 COOTBETCTBYIOILIETO MCIOJIbL30BaHUS INpeoOpa3oBaHus
Jlannaca OTHOCHMTENIbHO MPOCTPAHCTBEHHOM KOOPAHMHATHI.

IpencrapiaeHbl YACICHHBIE M MIPHO/IMKEHHbIE aHAIMTHYECKHE PEIIEHHA OCHOBHOIO MHTErpallb-

HOTO YPaBHCHHA.

IpoBeneHo cpaBHeHHE H OBGHAPYKEHO yIOOBJETBOPHTEILHOE COTJIACOBAHHE MEXAY MOIYYEHHbBIMH
NpUGIMKEHHBIMH AHATHTHYECKMMHE PEIICHUAMM M TOYHBIMM YHCIICHHBIMH DEILCHHAMH,



