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Abstract-The non-linear onedimensional unsteady problem describing the separation of the com- 
ponents of a solution by an ideal semipermeable membrane is studied. 

By means of a suitable application of the Laplace transform with respect to the space variable, 
the non-linear partial differential equation governing the system has been transformed into an integral 
equation. 

Numerical and approximate analytical solutions of the governing integral equation are presented. 
The results obtained with approximate analytical solutions have been compared with the exact numerical 

solutions and satisfactory agreement has been found. 

NOMENCLATURE 

constant, see equation (22); 
constant, see equation (22); 
concentration; 
diffusion coefficient ; 

error function : erf x = - ii 
s 

1 emx2dx; 

complementary error function: 
erfc(x) = 1 - erf(x); 
the Laplace transform of r; 

membrane constant ; 
Laplace operator; 
pressure; 
dimensionless concentration, see (4); 
dhnensionless concentration for y = 0; 
operator, see equation (9); 
time variable; 
velocity; 
dimensionless velocity, see (4); 
space variable; 
dimensionless space variable, see (4). 

Greek letters 

constant, see equation (10); 
dimensionless concentration: y = r0 + 1; 
gamma function; 
ratio between osmotic and hydrostatic 
pressure; 
hydrostatic pressure difference across the 
membrane; 
difference between the osmotic pressure of 
the salt solution and that of the effluent; 
dimensionless time variable, see (4); 
asymptotic time, see equations (24), (25); 
error percent. 

*Istituto di Matematica, Facolta di Ingegneria, Univer- 
sitB di Napoli. 

INTRODUCTION 

RECENTLY an increasing interest has been devoted to 

the membrane separation technique for producing 

separation and purification without phase changes; in 
fact no heat addition is required and the process can 

be considered isothermal. In particular, hypefiltration 
membranes already have many applications in the 
industrial field such as, for example, in seawater 

desalination. In recent years, these techniques have 
also been extended to the separation and concentration 
of solutions of macromolecules [ 1,3,6]. Knowledge 
of the fluid-dynamic field of some basic reverse osmosis 
systems improves the process control. 

In this paper an indefinite membrane is considered 
and the unsteady flow is assumed to be one dimen- 
sional in a direction perpendicular to the membrane. 
The rejection coefficient is unitary, i.e. we assume that 
the concentration of the solute on the lower side of 
the membrane is zero; this is the case of an ideal 
efficiency. In practice the rejection coefficient of a real 
membrane can reach values very close to one (0.99). 
The solution density is considered to be constant; 
this hypothesis is very important as, in fact, the system 
of equations is uncoupled and only diffusion equations 
are to be solved. 

Even under these assumptions, the problem is very 
difficult. If the mass flow rate can be considered con- 
stant the diffusion equation becomes linear and can be 
solved by a Laplace transform technique [8]. This 
case occurs when the ratio between the osmotic and 
hydrostatic pressure, 6 is zero. 

In [7] and [9] some approximate solutions are 
presented; they refer to values of 6 which are very 
small and very close to one. In [4] the integral method 
was applied. 

In this paper numerical and analytical solutions are 
presented. Both analyses are based on an integral form 
of the diffusion equation; in this way it was possible 
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to obtain in short computer times accurate numerical 
results and approximate solutions in all fields of 
interest. 

BASIC EQUATIONS AND BOUNDARY CONDITIONS 

The equations governing an incompressible, iso- 
thermal, non-homogeneous, one-dimensional flow are 
the continuity, diffusion and momentum equations; 
the unknown functions are the velocity u(x, t), the 
pressure p(x, t) and the concentration c(x, t). The first 
equation is satisfied by any function depending only 
on t, u = v(t), whereas the second and the third ones give 
the concentration c(x, t) and the pressure p(x, t) respect- 
ively. The pertinent boundary conditions are 

c(x, 0) = c(co, t) = ce (1) 

u(0, t)c(O, t) = D&(0, t) (2) 

AK* - AP = ku(0, t) (3) 

where D is the binary diffusion coefficient, Arc* and 
AP are the osmotic and hydrostatic pressure respect- 
ively and k is the membrane constant. The osmotic 
pressure can be written as: Arc* = nfc(0, t)/c, where 
~8 and c,, are reference values, i.e. nz is the osmotic 
pressure at the concentration c,, . 

From equation (3) the velocity u, equal to ~(0, t), 
can be obtained. By introducing the following dimen- 
sionless quantities 

(4) 

r=;-1: V=Sr(O,r)+?i-1 

the diffusion equation and the relative boundary con- 
ditions are 

r, + Vr, = ryr (5) 

r(y, 0) = r(co, z) = 0; r,,(O, 7) = V[r(O, 7) + 11. (6) 

This problem has been solved in closed form [8] 
only for 6 = 0, i.e. for constant flow rate; in particular 
for r(O,7) one has 

r(O,7) = erf[r”2/2] + (r/2)erfc( - c’/‘/2) 
+ (z/rt)“’ exp( - r/4). (7) 

In general, for 6 # 0, equations (5) and (6) represent 
a non-linear problem with respect to 7; therefore the 
application of the standard Laplace transform tech- 
niques with respect to 7 results very hard. 

INTEGRAL FORM OF THE DIFFUSION EQUATION 

The Laplace transform, with respect to y, does not 
directly lead to the solution because it requires two 
conditions at y = 0. However, in this way, it is possible 
to obtain an integral equation suitable for analytical 
and numerical purposes. By putting L(r) = g(p, T), from 
the equations (5) and (6) one has 

gr+g(pV-p2)= -pr(O,z)-V. (8) 

The formal solution of this equation is 

9 = - s ,’ (u+pr0)expKp2+p(l -@I 
x (z-s) -pSR} ds (9) 

where r. = r(0, 2) and 

rr 
R(7, s) = 

! 
ro(w) dw. 

s 

Riemann’s inversion formula and equation (9) give 
the following expression for r 

1 r 
__ rb, 7) = 2Jn 

s 
{(l-6)(1 +r,/2)-6ro[1 +R/2(r-s)] o 

+~~r,i2(t--s)}(s--s)-“2e-~“(r-‘)ds (10) 

where 2fi(~, s, y) = 1 - 6 + (y - 6R)/(7 -s). This equation 
does not yet supply r since r. is an unknown function. 
This function can be obtained by evaluating equation 
(10) at y + 0. Thus one has 

ro=$ :{(l-6)(l+ro/2)-r,G[l+R/2(7-s)]} 
s x (,_,)-li~,-~i+S)ds (11) 

where /IO = fi(7, s, 0). 
Equation (11) constitutes a condition of compati- 

bility and it is an integral equation for ro. When 
6 = 0, equation (11) is linear and can be easily solved 
to obtain the expression (7) by Laplace transform with 
respect to 7. Once r. is known, equation (10) gives r(y, 7). 

NUMERICAL SOLUTIONS 

Numerical solutions of the differential equations (5) 
and (6) can be obtained by the usual procedures. This 
was performed for 0 < 7 < 100. Solutions for higher 
values of 7 require prohibitive computer times (several 
hours on an IBM 360/44 computer). On the other hand, 
from equations (10) and (11) very accurate results were 
obtained for 0 < 7 < 1000 in few minutes. 

To solve equation (11) the interval (0,7) was divided 
by n parts: in any sub-interval 7j-1, 7j we assume 
(i)po = const. (ii) a linear expression for r. and therefore 
a quadratic expression for R. With these assumptions 
in any sub-interval, only I, integrals are to be evalu- 
ated with 

1, = C1/2 
j 

(t-~)“-~~~exp[-13~(7-s)]ds 
n=0,1,2.... 

These integrations can be performed in closed form 
in terms of error function and their derivatives. It 
follows that equation (11) can be written as 

r. = So+S1ro+S2ri (12) 

where $ are known quantities. 
The solutions of the equation (12) were compared 

with the exact analytical solution for 6 = 0; the results 
are given in Fig. 1 and show a good accuracy for all 
the considered values of 7. Therefore satisfactory 
numerical solutions can be obtained by the proposed 
procedure. 

At this point an exact series expansion for r. is 

presented that is very suitable for small values of 7. 
Approximate solutions in different fields of interest will 
also be given. 
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FIG. 1. Comparison between the analytical and numerical solutions for S = 0. 0, NJ.: numerical results 
obtained by means of integral equation (10); A, N.D.: numerical results obtained by means of differential 

equation (5). 

SERIES EXPANSION FOR r,, It follows that 

The function r. can be expanded in series of the 
variable 5 ‘I2 by putting 

m 
r. = C ~~2”~. (13) 

i=l 

To obtain the ci coefficients the right side of equation 
(11) is integrated by parts to give 

r. = n-112 
s 

‘exp(-z2/4)[1-6+ro(l-2S)-6rg] 
0 

x (T-S) -““ds- 
s 

‘rb erfids (14) 
0 

z = i di(z-s)i+f; di = ‘f ci,hTh/2-i (17) 
i=O h=O 

where 

Ci,O=O for i>O; CO,O = l-6. 

Substitution of equations (lS)-(18) into equation (11) 
and Cauchy rule in its generalized form for the product 
of series (see Appendix), lead to 

n-l i 

c.=c c 

Gn &!‘?n 

.J=O mzml (J-m)!( -4)J-m 

where z = 2~o(s-s)“z. n-l .I 

Series expansions for the exponential function and 
error function give 

+2JE1 ,& 
2 

(_4)-m+l mcmDflln (J-m)![2(5-m)+l] (19) 

where 

dJ1!. = f C?Y,-m)L/z,J-m+i-+ 

(15) 
i=O 

Dfl!n = f C~~J~-m”1~~m/2)-1,J-m+i+t 
i=O 

Moreover by expanding R in Taylor series with initial 
point s = t one has 

L 
C!:!k= 1 i c~r,f’,ci,-i,-I,k-h 

in_,=0 h=O 

R = 2 Ibb;;;~;i-lY; 
i=O 

m ,i(_l)i+l(T_g)i+f 

z= 1 

i=O (i+l)! . 

(16) 

Ci:!, = Cil,k; cg, = 0 for 
k>O 

, i 
0 

, o and &, = 1 

I = L m+ m-O’+ 1) 

*” J7t (a+j+2) 

The derivatives of r. are Go = l-6; Gi = (l-26)ci-6Qi; 

QJ= i CmCJ-m 
In=1 
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ml is the highest value between 0 and 2j- n + 1 
m, is the highest value between 1 and 2j- n + 1 

k, = n+m-2j-1. 

Equation (19) furnishes very simple expressions for the 
first coefficients; in fact one has 

c1 =&l-d); c2 = (l-@(l-36)/2. 
Jr7 

APPROXIMATE SOLUTIONS FOR ro 

From equation (11) one can obtain different types 
of approximate solutions. 

(a) Linearized solution 
By MacLaurin expansion of rO(7, E), with E = (l-6)/6, 

considering the first term only one has: rO g er01(7). 
Direct substitution ofthis expression into equation (1 I), 
via simple manipulations gives 

rOl =- 
;r 0 I 

T(7-s)-1~2(1 -rol)ds. 

This integral equation provides the required solution, 
valid for 6 - 1, in the form 

r. = ~(1 - exp(7) erfc[t”‘]). (20) 

(b) Asymptotic solution 
When 7 -+ co the equation (11) can be simplified. In 

fact, it is 

lim R/(7-s) = r,(m) = (l-6)/6. 
r-rm 

It must be noted that the asymptotic expression for r. 
corresponds to a vanishing value of the velocity V. 
Assuming this limiting value for R/(7-s), equation (11) 
becomes 

r. = -$ 
s 

~(7-s)-1i2(1-6-8rO)ds 

and gives the following expression for r. 

r. = y [l -exp(627)erfc(6J7)]. (21) 

(c) Initial solutions 
When 7 + 0, R/(7-s) --* 0, i.e. for very small values 

of 7, R/(7-s) in the equation (11) can be neglected. 
Therefore r. = r. 1, where 

rol = g [a-b”2erf(b7)1’2 

-a exp[(a2 - b)7] erfc(a J7)] (22) 

for b # a2. 
For b = a2 one has 

rol = g[erf(oJr)-2o’rerfc(ajr) 

+ 2az(7/#” exp( - a’7)] (22 bis) 

where: a = (36 - 1)/2; b = (1 -S)2/4. 
This solution can be improved for small, but not very 

small values of 7. 
Because 0 < R/(7-s) G ro(z), R/(7-s) can be ap- 

proximated by r,(s); moreover for small values of s 
it is rO = 2~-“~(1 -&r1i2. Assuming r,R/(z-s) = 

4(1 -6)‘.s/n and solving equation (ll), one has 
r. = r. 1 + ro2, where 

2&l--6) 
ro2= - 

n(a’ - b)b’@ 

ab”’ 
- (b7/n)‘12 e-br + __ 

a’-b 

x [l -exp[(a2- b)z]erfc(aJz) +ab’/27 (23) 

and ro, is given by equation (22). 

ASYMPTOTIC TIME 

We define as asymptotic time zk, the time after which 
the relative difference between the asymptotic value 
and the interfacial concentration r. is less than k, i.e., 
for 7 > tk one has r. > (l-k)r,(co) = (l-k)(l-6)/b. 
For very small values of 6, 7k is obtained from the 
solution of [9]. 

By considering the asymptotic value of the error 
function one finds 

(l-6)(1 -k)/6 = [I -(267)-1’2](1 --6)/h 

and consequently 

tk = 1/(26k2) for 0 < 6 < 0.2. (24) 

For the other values, i.e. for 0,2 < 6 G 1 better 
accuracy is obtained from equation (21) and the asymp- 
totic evaluation gives 

(tk = l/(ns2k2). (25) 

APPROXIMATE SOLUTIONS FOR r(v, T) 

For small values of y, the following representation 
can be used 

rCv, 7) = f y%(7). 
i=O 

By substituting this expression in the equations (5) and 
(6) and by equating the coefficients of similar powers 
of y one has 

f. = r. ; f, = U+r,); 
A+2 = fi/(i+2)(i+l)+ Vfi+i/(i+2). 

Therefore the solution is found in the term of ro. 
At high values of y an asymptotic solution can be 

evaluated. In fact equation (10) can be written as 

1 7 
r’L’,7)=- o 

s 
roy(7 - s)- 3/2exp[ - y2/4(7 - s)] ds. (26) 

Also in this case the solution can be obtained in term 
of r. ; therefore, for any range of the variable, one has 
the appropriate expression of rO and the corresponding 
solution of equation (26). 

For instance, let us consider equation (13); by simple 
manipulation one has : 

r(y, 7) = f c,F(h/2 + l)(47)hih erfc(y/2 J7) 
h=l 
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Fro 2. Comparison between the approximate analytical solutions and the numerical solutions for 6 = 0.8. 
0:asinFig.l;A:asinFig.l. 
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FIG. 3. Comparison between the approximate analytical solutions and the numerical solutions for 6 = 0.5. 
0 : as in Fig. 1; a: as in Fig. 1. 

where I is the gamma function and i’erfc means the 
repeated integral of the complementary error function. 
From the linearized solution (20) 

l-6 
r=g erfc y 

[ ( 2J’ > 
-exp(y+z)erfc r+y 

( >I w . (27) 

Eventually equation (21) leads to the following ex- 
pression : 

1-6 

r=T- erfc 2Jr [ ( Y > 
-exp(Sy+G’r)erfc(GJr+*)]. (28) 

ANALYSIS OF THE RESULTS 

The accuracy of the numerical solution is very satis- 
factory. Comparison with the analytical solution in the 

case 6 = 0, shows that the numerical results are 
accurate up to at least four significant figures in the 
entire ranges of r. Therefore it can be inferred that also 
for 6 # 0 the numerical results presented here are a 
valid test for the accuracy of the approximate solutions. 

In the Figs. 2-4 the following approximate solutions 
are compared with the numerical solutions for values 
of 6 equal to 08; 0.5; 0.01: 

(i) The solution linearized with respect to (1 - 6)/6, 
(L.S.) equation (20) 

(ii) The asymptotic solution (AS.), valid for t -+ co, 
equation (21) 

(iii) The solution valid when the cross velocity I/ is 
almost constant (ACS.), accurate for small 
values of both 6 and r, equation (22) 

(iv) The initial solution (IS.) valid for small value 
of 6 and for 0 < 7 < 100, equation (23) 
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FIG. 4. Comparison between the approximate analytical solution and the numerical solution obtained 
by means of integral equation (10) for 6 = 0.01. 0 : as in Fig. 1. 

Let i be the highest percentage error in the entire 
7 field. When 6 = 0.8 all the approximate solutions are 
satisfactory. In particular, the most accurate solution 
is the asymptotic one (i: = -0.3 per cent) whereas the 
others have 5 = 1.3 per cent (A.C.S.) and E = 1 per cent 
(L.S.). 

For S = @5 the asymptotic solution is still very good 
(E = - 3 per cent) while the other two solutions (A.C.S. 
and L.S.) show somewhat higher errors: E = + 11 per 
cent and Z = - 10 per cent respectively. 

For 6 = 0.01 and 0 < 7 < 100 the initial solution 
shows an error of less than 10 per cent. 

For small values of T a very simple expression for 
r0 can be obtained from equation (13). Considering 
only two terms of the expansion in series one has 

r* = (1-6) 2 T H> 
112 

+(l-3s); 
1 

(29) 
n 

that furnishes very good values for 7 < 1. For 1 < 7 < 10 
equation (29) gives results not too different from the 
exact ones. For instance, in the case 6 = 0, for 7 = 1,4,9 
one has the exactvalues 1,71; 5 and 9.96 while equation 
(29) gives 1.63, 4.26 and 7.89. 

CONCLUDING REMARKS 

In this note numerical and analytical solutions of the 
problem describing the separation of the components 
of a solution by an ideal semipermeable membrane 
were presented. A suitable application of the Laplace 
transform gave the governing equation in integral form. 

Accurate numerical results are obtainable in a few 
minutes by an IBM 360144 computer. A direct approach 
using the original differential equation would require 
comparatively longer computer times. 

Approximate solutions weregiven in the whole range 
of 7 and 6. In each case approximate values to less 
than 10 per cent were calculated. 

Of particular interest is the solution for small values 
of 6 and for 0 < 7; < 100; in fact in [7] the absence of 
such a solution was noted. Moreover a very simple 
expression for the asymptotic time 7k was obtained; 
where zk represents the value of the dimensionless time 
after which, the asymptotic value (1 -&)/a can be 
assumed instead of r,, , within a percentage error k. 

Acknowledgement-This work was supported by the lstituto 
di Ricerca sulle Acque (C.N.R.), Grant No. 7102372. 

STEADY-STATE SOLUTION 

For practical purposes an analysis of the asymptotic 
behaviour of the solution is very important. In this 1. 
case (rejection coefficienf equal one) the problem is 
very simple. In fact for T -+ cc, it is r0 -+ (1 -S)/S and 2, 
Y-0. 

This result means that, from the industrial point of 
view, the steady-state situation for the case rejection 
coefficient equal to one is not of practical interest 3. 

because the limiting flux value is zero. However the 4. 
process might be of some interest from an industrial 
point of view at values of time not higher than specific 
zK at which thefhtx V is significantly different from zero. 5 

More complex situations arise when the rejection 
coefficient is different from one and a discussion of this 6 
problem will be published,very soon [2]. 
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equation (14) can be 

11-1/2 s”(r-s)‘ds = lz,jTl+j+l 

APPENDIX 

Statement of equation (19). 
Therefore equation (14) becomes : 

- r 
By repeated applications of the Cauchy rule for the W 

product of two series one has : izl ci7i’2 = Jzo ~~~(I_m~~~_4~J-,~,61z.J-m+i-t 

co 

x C Cf~-W7J+(~+k-m)i2 

where 

i, 

By application of the Cauchy rule, the two functions that 
must be integrated in equation (14) are: 

J-m+1 (J-m)![2(5-m)+ l] 

To determine the unknown quantities cir the coefficients of 
the same powers oft are equated. 

In this way one has the equation (19). 

SOLUTIONS ANALYTIQUES ET NUMERIQUES POUR LA POLARISATION PAR 
CONCENTRATION EN HYPERFILTRATION EN L’ABSENCE D’ECOULEMENT AXIAL 

R&urn&-On 6tudie le probltme instationnaire, non-lintaire et unidimensionnel qui d&it la sdparation 
des composants d’une solution I travers une membrane id&ale semi-permeable. 

Au moyen d’une transformation de Laplace convenable portant sur les variables d’espace, l%quation 
aux d&iv&s partielles non-lin&aire qui gouverne le systtme a cte transform& en une kquation intkgrale. 

Des solutions numkriques et des solutions analytiques approchbs de l’kquation intkgrale fondamentale 

sont prksentks. 

Les rbultats obtenus g l’aide de solutions analytiques approchbs ont kttt comparb aux solutions 

numkriques exactes qui sont trouvks en accord satisfaisant. 

NUMERISCHE UND ANALYTISCHE LOSUNGSANSATZE FOR 
KONZENTRATIONS-POLARISIERUNG DURCH HYPERFILTRATION 

OHNE AXIALE STRC)MUNG 

Zusammenfassung-Fiir den eindimensionalen Fall wird der Vorgang der instationiiren Trennung von 
Komponenten einer LGsung durch eine ideal-semipermeable Membran untersucht. 

Vermittels geeigneter Anwendung der Laplace-Transformation wird die fi.ir das System geltende 
partielle Differentialgleichung in eine Integralgleichung umgeformt. 

Fiir die Integralgleichung werden numerische und analytische Ntiherungslijsungen angegeben. Die 
Ergebnisse der analytischen Nlherungslasung werden mit den Ergebnissen der numerischen Auswertung 

verglichen, wobei befriedigende Obereinstimmung feststellbar ist. 

qMCJlEHHbIE PI AHAJIHTMYECKME PEIiIEHklR KOH~EHTPA~MOHHO~ 
I-IOJI~PM3A~MM I-IPH I-kH-IEP@HJIbTPA4MM BE3 AKCMAJIbHOrO I-IOTOKA 

AIIEOTU~IR - MccnenyeTcR HenKHefiHas 0qrioMepHaR HecTauHoHapHaa sanalra, ornicbmaK)4an pas- 
AeJIeHHI KOMnOHeHT paCTBOpa C IIOMOIlIbK) HAeaJIbHOi IIOJIynpOHH4aeMOi MeM6paHbI. OnHCbIBa- 
IOLL(ee. CHCTeMy HeJIIfHefiHW AH~&peHIWlJIbHOe ypaBHeHHe B ‘IaCTHbIX IIpOH3BOAHbIX npeo6pa3oBaHo 
B AHTerpaAbHOe ypaBHeHHe C IIOMOmbIO COOTBeTCTByIOIIIerO HCnOJIb30BaHIfR npeo6pa3oBaHHn 

naIIIIaCa OTHOCHTeJIbHO IIpOCTpaHCTBeHHOtt KOOpAHHaTbI. 
npeACTaB,IeHbI WIC,IeHHbIe H npIi6JIIDKeHHbIe aHaJ-IIiTWIeCKHe peIIJeH%IR OCHOBHOrO HHTerpaAb- 

HOrO ypaBHeHH% 

npOBeAeH0 CpaBHeHHe I4 06HapyxeHO yAOBJIeTBOpIiTeJIbHOe COrJIaCOBaHHe MeXiAy IIOIIy’IeHHbIMH 
IIlJH6JIH~eHHbIMW aHa,IHTH’IeCKAMW peIIIeHIfJ?Mki Ii TO’IHbIMEi WiCJIeHHblMH peIl.IeHHSIMH. 


